普通物理实验(I) 实验教学大纲

物理工程学院

二〇一三年七月

《普通物理实验(I)》课程实验教学大纲

课程名称(中文) <u>普通物理实验(I)</u>
课程性质 独立设课 课程属性 基础课
教材及实验指导书名称 《大学物理实验》
学时学分: 总学时 <u>30</u> 总学分 <u>1</u> 实验学时 <u>24</u> 实验
学分1
应开实验学期 年级 学期
先修课程 普通物理学

一、课程简介及基本要求

普通物理实验(I)是物理工程学院理科学生进入大学后所进行的第一门物理实验课程,是进行普通物理学习的重要组成部分。通过本课程的学习,要求学生初步掌握基础物理实验的基本内容,及独立进行实验操作的能力。经过多层次,多方式教学的全面训练后,学生应达到下列要求:

- 1. 使学生在物理实验的基本知识、基本方法和基本技能方面受到较系统的训练。(包括基本物理量的测量原理和方法,基本仪器的合理选择与正确使用,误差和有效数字的运算,数据的处理以及实验结果的分析、判断等。)从而使学生具有初步的科学实验能力。
 - 2. 通过对实验现象的观察和分析,从理论和实践的结合上加深对

物理基本概念和规律的认识。

3. 培养学生严肃、认真、实事求是的科学态度与作用。

二、课程实验目的要求(100字左右)

《普通物理实验(I)》是独立实验课程,包括力学实验、热学实验、电磁学实验和光学实验四部分,是理论教学的深化和补充,具有较强的实践性,是一门重要的技术基础课。通过该课程的学习,使学生巩固和加深物理基本概念和规律的认识,通过实践进一步加强学生独立分析问题和解决问题的能力、综合设计及创新能力的培养,同时注意培养学生实事求是、严肃认真的科学作风和良好的实验习惯,为今后工作打下良好的基础。

三、适用专业:

物理工程学院物理学专业

四、主要仪器设备:

伏特表、毫安表、微安表、万用表、直流稳压电源、滑线变阻器、 电位差计、示波器、读数显微镜、钠光灯、阿贝折射计、牛顿环、平 行光管、分划板、天平、热功当量实验仪等

五、实验方式与基本要求

1. 本课程以实验为主,为单独设课,所以开课后,任课教师需向 学生讲清课程的性质、任务、要求、课程安排和进度、平时考核内容、 期末考试办法、实验守则及实验室安全制度等。

- 2. 实验每组1到2人,在规定的时间内,由学生独立完成,出现问题,教师要引导学生独立分析、解决,不得包办代替。
 - 3. 对于实验的每项实验结果,需经教师签字认可。
- 4. 任课教师要认真上好每一堂课,实验前清点学生人数,实验中按要求做好学生实验情况及结果记录,实验后认真填写实验教学日志。

六. 考核与报告

本课程采用平时考核,期末考试,综合评定学生成绩。平时实验 占 40%,期末考试占 60%。

每个实验,预习报告占30%,实际操作40%,总结报告30%。

七、实验项目设置与内容

序号	实验名称	内容提要	实验学时	每 组 人 数	实验属性	实验者类别	开出要求
1	绪论	1. 开设物理实验课的目的和意义。 2. 测量及误差,有效数学的计算; 3. 实验数据处理基本方法和物理实验的基本方法。	6			本科	必做
2	长度测量	 掌握最基本长度测量工具原理及使用。 掌握有效数字及其运算; 掌握误差及不确定的计算。 	2	2	基础	本科	必做
3	密度测定	 掌握物理天平的使用。 掌握基本测量物质密度的方法。 	2	2	基础	本科	必做
4	用机械法测热 功当量	1. 测定热功当量。 2. 用冷却定律作散热修正的方法 来修正散热。	2	2	基础	本科	必做

5	单摆法测重力 加速度	 学习用单摆法测重力加速度的方法。 掌握秒表的正确使用方法,复习米尺、游标卡尺的使用。 研究单摆的摆长和周期,周期和摆角的关系。 巩固用有效数字法则测量数据和计算测量结果。 	2	2	基础	本科	必做
6	用牛顿环干涉 测透镜曲率半 径	 掌握用牛顿环测定透镜曲率 半径的方法。 通过实验加深对等厚干涉原 理的理解。 	2	2	基础	本科	必做
7	用掠射法测定 透明介质折射 率	 掌握用掠入射法测定液体的 折射率。 了解阿贝折射计的工作原理, 并熟悉其使用方法。 	2	2	基础	本科	必做
8	用电位差计测 电池电动势及 内阻	 掌握电学测量的基本方法之一补偿法; 掌握用电位差计测量电动势的原理; 了解与灵敏度有关的因素; 会用箱式电位差计测电池电动势及内阻。 	2	2	基础	本科	必做
9	万用电表的使 用	掌握万用电表的使用	2	`2	基础	本科	必做
10	用惠斯登电桥测电阻	1. 掌握电学测量的基本方法之一一比较法; 2. 掌握惠斯登电桥测电阻的原理; 3. 会正确使用箱式电桥和自组电桥测量电阻; 4. 了解提高电桥灵敏度的几种途径。	2	2	综合	本科	选做
11	示波器的使用	 掌握电学测量的基本方法之一示波法; 了解通用示波器的结构和工作原理,初步掌握通用示波器各个旋钮的作用和使用方法; 学习用示波器观察电信号的波形,测量电压、频率的方法; 学会信号发生器的使用。 	2	2	基础	本科	必做
12	伏安特性曲线 研究	1. 掌握电学测量的基本方法之一 一伏安法; 2. 掌握线性电阻及非线性电阻的	2	2	基础	本科	必做

		伏安特性; 3. 掌握分压器和限流器的用法; 4. 学习减小伏安法中系统误差的 方法。					
13	平行光管调整和使用	 熟悉的结构原理和用途。 掌握平行光管的调节和使用方法 	2	2	综合	本科	选做
14	光具组基点的 测定	 加强对光具组基点的认识。 学习测定光具组基点和焦距的方法。 	2	2	设计	本科	选做
15	薄透镜焦距的 测定	1. 学会调节光学系统使之共轴, 并了解视差原理的应用。 2. 掌握测量薄透镜焦距的常用方 法。	2	2	设计	本科	选做
小计	14		34				

八. 说明

- 1.《普通物理实验(I)》的先修课程是《普通物理学》,学生通过理论学习后,已初步掌握了物理学的基本概念和规律。
- 2.《普通物理实验(I)》共提供30学时实验内容,不同专业、不同学时的班级可根据先修课的讲授内容或多或少,或易或难,择优选做。
- 3. 在《普通物理实验(I)》教学中,应注意不断深化和扩展教学内容,注意向学生介绍新技术、新器件,激发学生学习兴趣和热情。
- 4. 在实验室全面开放的条件下,提出供学生选做的课题,加强学生创新能力的培养,因材施教,注意学生的个性。

九. 制定人: 张来斌

审核人:周留柱

批准人:秦文华

十、制定时间: 2013 年 7 月